
SANDIA REPORT
SAND2017-5282
Unlimited Release
Printed May 16, 2017

Percept User Manual

Brian Carnes and Steve Kennon

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

UNCLASSIFIED

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2017-5282
Unlimited Release

Printed May 16, 2017

Percept User Manual

Brian Carnes and Steve Kennon
PO Box 5800

Mail Stop 0828
Albuquerque, NM 87185

Abstract

This document is the main user guide for the Sierra/Percept capabilities including the mesh_adapt
and mesh_transfer tools. Basic capabilities for uniform mesh refinement (UMR) and mesh trans-
fers are discussed. Examples are used to provide illustration.

Future versions of this manual will include more advanced features such as geometry and mesh
smoothing. Additionally, all the options for the mesh_adapt code will be described in detail.
Capabilities for local adaptivity in the context of offline adaptivity will also be included.

3

This page intentionally left blank.

Contents

1 Introduction 7

2 Basic Uniform Mesh Refinement 9

2.1 Refine option . 9

2.2 Input mesh (Required) . 9

2.3 Output mesh (Required) . 10

2.4 Number of refines . 10

2.5 Ioss read options . 10

2.6 Ioss write options . 10

2.7 Respect spacing . 11

2.8 Pre-check memory usage . 11

2.9 Specify blocks to refine . 11

2.10 Use transition elements . 12

2.11 Smooth mesh after refinement . 12

2.12 Handling of blocks, nodesets and sidesets . 12

2.13 Element enrichment . 12

2.14 Example: basic UMR usage . 13

2.15 Example: block UMR usage . 14

3 Uniform Mesh Refinement with Geometry 17

3.1 [New in 4.44] Refine to CAD Geometry . 17

3.2 [Deprecated] Refine to CAD: openNURBS . 19

3.3 [Deprecated] Generating openNURBS Geometry Files . 19

5

3.4 Refine to Mesh-Based Geometry . 22

3.5 Example of refinement to CAD with smoothing . 25

4 Offline Adaptive Mesh Refinement 27

4.1 Overview of offline adaptive refinement . 27

4.2 Example: offline adapt for an unstructured triangle mesh . 29

5 Mesh Transfer Tool 33

5.1 Source file (Required) . 33

5.2 Destination mesh (Required) . 33

5.3 Target file (Required) . 33

5.4 Source field . 34

5.5 Source vectors for 2D axisymmetric to 3D transfers . 34

5.6 Destination entity . 34

5.7 Destination name . 34

5.8 Rotations and translations . 35

5.9 Repeated transfers and existing fields . 35

5.10 Example of mesh transfer usage . 35

6

Chapter 1

Introduction

Percept is a collection of tools to enable solution verification. The main emphasis is on spatial
mesh modification, including capabilities for uniform and local mesh adaptation. Additionally, we
provide separate tools for transfer of field data, verification of modal eigenvalue problems, and
scripts for solution verification studies.

7

This page intentionally left blank.

Chapter 2

Basic Uniform Mesh Refinement

Percept capabilities are provided through the mesh_adapt application code within Sierra. The
most commonly used capability is uniform mesh refinement (UMR). For a given mesh called
input.g in the ExodusII format, the simplest command to generate a uniformly refined mesh
called output.g would be

mesh_adapt --refine=DEFAULT --input_mesh=input.g --output_mesh=output.g

This command runs the UMR in serial and uses the default options whereever possible. To see all
the options possible just run mesh_adapt with the --help option (for more detail, use --Help).

mesh_adapt --help
mesh_adapt --Help

Boolean options are activated/deactivated using an integer value of 1/0, respectively. The format
for all options is

--OPTION_NAME=OPTION_VALUE

2.1 Refine option

For uniform mesh refinement, the --refine option should always be set to DEFAULT.

2.2 Input mesh (Required)

The input mesh specified with --input_mesh is assumed to be decomposed into the number
of processors specified. If not, an error will occur. Mesh decomposition can be specified from a
single base mesh using the Ioss read options (see Section 2.5).

9

2.3 Output mesh (Required)

The output mesh is specified with --output_mesh option. When run in parallel, this mesh will
be written in decomposed form, with no concatenation into a single file.

2.4 Number of refines

The number of mesh refinements is set using the --number_refines option. If this is not
specified, a default value of one is used. Setting this value to zero is useful in some cases, for
example to extract mesh quality data or to generate mesh based geometry.

2.5 Ioss read options

Percept provides some specific options that can be passed to the I/O subsystem (Ioss) library
that affect how the meshes are input and output. The Ioss input options for reading a mesh can
be set using the --ioss_read_options option, whose argument is a quoted string of comma-
separated options. The list of acceptable options include: "large", "auto-decomp:yes", "auto-
decomp:no". These can be combined to look like: "large,auto-decomp:yes". The default value
is "auto-decomp:no".

The "large" option reads the input mesh using 64-bit integers as the type for integer fields, such
as global IDs of nodes and elements, which is needed when generating meshes with IDs that exceed
the 32-bit limit (there is no easy way to predict when this limit will be exceeded, but if the number
of elements is approaching 10 million or more, you should consider using the “large” option). The
"auto-decomp" option specifies the option to automatically decompose the input mesh in memory,
without writing any files to disk.

2.6 Ioss write options

The corresponding Ioss output options can be set using the --ioss_write_options option.
Acceptable values include: "large", "auto-join:yes", "auto-join:no". These can be combined to
look like: "large,auto-join:yes". The default value is "auto-join:no".

The "large" option writes the output mesh using 64-bit integers as the type for integer fields,
such as global IDs of nodes and elements (see above for when to use the “large” option). The
"auto-join" option specifies the option to automatically combine the output mesh into a single file
on disk. This feature is not well-tested and should not be relied upon.

10

2.7 Respect spacing

Percept has a capability to interpolate new nodes created during refinement using the spacing
of the input mesh, which, for example, will preserve the grading towards a boundary. This option
is enabled using --respect_spacing=1 option, which is set on by default. The mesh spacing is
computed using the Jacobians of elements in a patch around a node.

Limitations: this feature does not work on meshes with beam or shell elements. In case of
meshes with beams and/or shells, the option should be disabled using --respect_spacing=0.

2.8 Pre-check memory usage

Before refinement begins, Percept can perform an estimate of the memory needed. This is acti-
vated using the --precheck_memory_usage option, which is set on by default. When insufficient
memory is available, Percept will print an error message and abort.

2.9 Specify blocks to refine

Percept can perform uniform refinement on only a subset of the element blocks. This is speci-
fied using the --blocks option followed by a list of blocks with a very general syntax. There are
several options, including:

1. from a file using “file:my_filename.my_ext” (e.g. “file:filelist.dat”) which will read input
block names from the given file

2. a single input block name (e.g. block_3) to be refined

3. include blocks using [+]block_1,[+]block_2, etc ,block_n to include only these blocks (plus
sign is optional)

4. exclude blocks using -block_3,-block_5 to exclude blocks from those included (all blocks or
include-only blocks) (minus sign is mandatory)

5. include a range of blocks such as block_1..block_10 include the range of blocks numbered
1 to 10

6. any combination of [+] and - options and range (..) option can be specified, separated by
commas

7. you can add the optional specification :Nx or :NX of the number of times to refine a particular
block to any block name specification, e.g. –blocks=1..3:2x,5,6:3x would refine blocks 1,2
and 3 at most twice, block 5 every refinement pass, and block 6 at most three times.

11

8. finally, the prefix “block_” can be omitted with only the numbers used instead.

2.10 Use transition elements

When blocks are specified as in the previous section, Percept can refine adjacent elements
using transition elements in order maintain a conforming mesh. This is specified using the option
--use_transition_elements=1. When not specified, the resulting mesh may have hanging
nodes when block refinement is used.

2.11 Smooth mesh after refinement

Percept can smooth the mesh after refinement using a mesh quality metric. To smooth all nodes
you must enable both --smooth_geometry=1 and --smooth_surfaces=1.

2.12 Handling of blocks, nodesets and sidesets

Percept maintains the structure of the original mesh as much as possible. For example, the
refined mesh will almost always have the same number of element blocks. Each block will have
the same topology, the same name and approximately eight times the number of elements (for a
single refinement). The exception is with pyramid elements, which have an irregular refinement
template even for UMR.

Sidesets are preserved in the refined mesh, with child sides created and attached to the corre-
sponding child elements. The orientation of the sides should be consistent with the original mesh.

Nodesets are handled depending on the local membership of newly created nodes, while exist-
ing nodes retain their nodeset membership. For example, if all nodes of an edge or face are in a
nodeset, the new child nodes on the edge or face are added to the nodeset.

2.13 Element enrichment

In some cases users would like to increase the polynomial order of the elements. Percept has
an option for this called enrichment. For most cases it is enough to replace the –refine=DEFAULT
option on the command line with –enrich=DEFAULT. For most element types Percept will add ad-
ditional nodes and update connectivity so that the mesh is build out of the higher order (quadratic)
elements. For example, if you pass in a mesh of 8-node hex elements, mesh_adapt will output a

12

new mesh of 27-node hex elements. Similarly meshes of 4-node tet elements will be enriched to
be 10-node tet elements.

2.14 Example: basic UMR usage

We present a small example that includes all of the above options. The mesh is a simple 8-node
hex mesh of a cube with non-uniform mesh spacing in each coordinate direction.

Below is a command line execution of mesh_adapt using many of the options above that can be
executed on a workstation. In this case we are running in parallel using eight processors, with the
base mesh automatically decomposed using the auto-decomp option. The option to re-combine
the refined mesh is disabled. In addition, the respect_spacing is enabled by default.

launch -n 8 mesh_adapt --refine=DEFAULT \
--input_mesh=cube_BL.g --output_mesh=cube_R1.g \
--ioss_read_options="large,auto-decomp:yes" \
--ioss_write_options="large"

The "launch" command can be replaced by the "sierra" command when running on large HPC
platforms. In this case additional options are needed to specify the queue time limit and account
(WCID).

The screen output is included below. Key features include the memory usage (both initial, after
reading the input mesh, and after performing the refinement), a table indicating element counts
before and after refinement, and timing information.

INFO: ioss_read_options= large,auto-decomp:yes ioss_write_options= large
PerceptMesh:: opening cube_BL.g

Using decomposition method ’RIB’ on 8 processors.

MEM: 130.6 M [hwm_tot] 16.64 M [hwm_max] initial memory after opening input mesh.
Refinement pass # 1 start...

Refinement Info

| | Original | New |
| Element Topology Type | Elements Nodes | Elements Nodes |
- --------------------- - -------- ----- - -------- ----- -
| Hexahedron_8 | 150 | 1200 |
| Quadrilateral_4 | 30 | 120 |

13

| Totals | 180 952 | 1320 1573 |

P[0] AdaptMain:: saving mesh...
Saving mesh cube_R1.g ... done
P[0] AdaptMain:: mesh saved
MEM: 208.8 M [hwm_tot] 26.46 M [hwm_max] final memory after refining mesh.
P[0, 8] max wall clock time = 0.0448601 (sec)
P[0, 8] max cpu clock time = 0.043994 (sec)
P[0, 8] sum cpu clock time = 0.349947 (sec)

In this example, the mesh is a cube created using Cubit, with variable spacings in each coor-
dinate direction. The respect_spacing option enables refinement that correctly locates the new
nodes along the same spacing as the original mesh, in all three dimensions.

Figure 2.1: Example of basic UMR: cube with non-uniform edge spacings. Base mesh on left and
first uniform refinement on right.

2.15 Example: block UMR usage

In this example we demonstrate how to refine a single element block within a tet mesh contain-
ing two element blocks. For the first

launch -n 8 mesh_adapt --refine=DEFAULT \
--input_mesh=two_blocks_tet4.g --output_mesh=two_blocks_tet4_R1.g \
--ioss_read_options="auto-decomp:yes" --number_refines=1 \
--blocks=1 --use_transition_elements=1 --respect_spacing=0

14

Further refinements are possible by incrementing the value of --number_refines and chang-
ing the name of the --output_mesh argument.

Figure 2.2: Example of block UMR: two tet blocks. Base mesh upper left with three refinements
of the right block shown.

To illustrate the mesh quality more clearly, we show the refinement history of a surface that
spans both blocks. Percept avoids poor quality elements by fully refining adjacent transition ele-
ments to the refined blocks on subsequent refinement passes as seen in Figure 2.3.

The method correctly preserves external sidesets and nodesets, even those spanning multiple
blocks, not all specified. The exception is internal sidesets at the intersection of two blocks. For
other types of elements such as hexes, the elements adjacent to the refined blocks will be converted
to transition elements consisting of pyramids and tets.

15

Figure 2.3: Example of block UMR: two tet blocks. Refinement history for surface spanning two
blocks.

16

Chapter 3

Uniform Mesh Refinement with Geometry

When refining a mesh, it is important to resolve the underlying geometry as new nodes are
created on geometric surfaces. Percept supports several ways to refine mesh to a geometry. These
include support for CAD geometries as well as mesh-based geometries that are created solely from
the input mesh file.

3.1 [New in 4.44] Refine to CAD Geometry

Percept currently supports CAD geometries using either the ACIS (.sat file extension)
or openNURBS (.3dm file extension) formats. In order to reference the geometry file, the
--input_geometry option must be specified. Additionally Percept assumes that a file exists with
the .m2g file extension, which is a special file output by Cubit using the export m2g command.

The .m2g file is a text file that contains mesh to geometry associations giving the list of the
edges/faces in the mesh that correspond to a given curve/surface in the CAD model.

The advantages to this approach is that the exodus mesh is not modified in any way, and that the
geometry associations are independent of any user-specified elements blocks, sidesets or nodesets.
The current limitation is that the geometry cannot be re-applied to an adapted mesh that has been
saved as an Exodus file.

An example command line execution is illustrated below using four processors.

launch -n 4 mesh_adapt --refine=DEFAULT \
--input_mesh=speaker.g --output_mesh=speaker_R1.e \
--input_geometry=speaker.3dm --respect_spacing=0 \
--ioss_read_options="auto-decomp:yes"

For a second level of refinement, the user must repeat the command above but with a second level
of refinement:

launch -n 4 mesh_adapt --refine=DEFAULT \
--input_mesh=speaker.e --output_mesh=speaker_R2.e \

17

--input_geometry=speaker.3dm --respect_spacing=0 \
--ioss_read_options="auto-decomp:yes" \
--number_refines=2

The output of this example is shown in Figure 3.1 where the original geometry was meshed
coarsely with 9974 linear tet elements. We can see that after two uniform refinements, no imprint
of the original mesh is visible on the mesh.

Figure 3.1: Example of UMR with geometry from openNURBS: base mesh on left and second
uniform refinement on right.

The representation of the CAD curves and surfaces can be output for debugging. In Figure 3.2
we plot

Figure 3.2: Debug output of CAD curve and surface representations created using m2g: beam
elements on left and shell elements on right.

18

3.2 [Deprecated] Refine to CAD: openNURBS

This capability is deprecated and will be removed in Sierra 4.46 in favor of the .m2g capability
described in the previous section.

Percept currently supports CAD geometries using the openNURBS format. These geometry
files use the .3dm file extension. In order to reference the geometry file, the --input_geometry=
option must be specified.

Additionally, Percept requires the input mesh to be modified to contain additional data to pro-
vide associations between surfaces in the mesh and the corresponding geometric entities. This is
currently done using a pre-processing step in Cubit and will be discussed in section 3.3.

An example command line execution is illustrated below using four processors.

launch -n 4 mesh_adapt --refine=DEFAULT \
--input_mesh=speaker.g --output_mesh=speaker_R1.e \
--input_geometry=speaker.3dm --respect_spacing=0 \
--ioss_read_options="auto-decomp:yes"

For a second level of refinement, the output mesh can be re-used as the input mesh as follows:

launch -n 4 mesh_adapt --refine=DEFAULT \
--input_mesh=speaker_R1.e --output_mesh=speaker_R2.e \
--input_geometry=speaker.3dm --respect_spacing=0

The output of this example is shown in Figure 3.3 where the original geometry was meshed
coarsely with 9974 linear tet elements.

3.3 [Deprecated] Generating openNURBS Geometry Files

Currently Percept requires the user to export the ExodusII mesh from Cubit in order to create
the .3dm file containing the openNURBS geometry. This is done within Cubit using the command

refine parallel fileroot "meshname" over no_exec

where “meshname” is the file prefix of the output files. In this example, Cubit will produce two
files, “meshname.3dm” and “meshname.in.e”. The second file is an ExodusII mesh that contains
additional element blocks. The blocks with names beginning with “TBC_” contain beam elements
that indicate any edge that is on a curve in the geometry. The blocks with names beginning with

19

Figure 3.3: Example of UMR with geometry from openNURBS: base mesh on left and first uni-
form refinement on right.

Figure 3.4: Example of additional element blocks created for openNURBS geometry: beam ele-
ments on left and shell elements on right.

“TBST_” contain shell elements that represent any surface facet that is on a curved surface in the
model. Figure 3.4 illustrates these blocks for the example in section 3.2.

It is possible to convert these element blocks into nodesets by processing the ExodusII output
through mesh_adapt. An example of this using the --convert_geometry_parts_OpenNURBS=
option would be

mesh_adapt --input_mesh=speaker.in.e --output_mesh=tmp.e \
--input_geometry=speaker.3dm --refine=DEFAULT \
--respect_spacing=0 --number_refines=1 \
--convert_geometry_parts_OpenNURBS=speaker.g

An example of the nodesets resulting from beam elements is shown in Figure 3.5

20

Figure 3.5: Example of additional nodesets created for openNURBS geometry from beam ele-
ments.

21

3.4 Refine to Mesh-Based Geometry

Percept can also generate a mesh-based geometry (MBG) based solely on an ExodusII mesh.
In this case, the geometry is approximate, but can improve the accuracy of the new surface nodes
on the refined meshes. The MBG is based on local smoothing of the surface curvature to generate
a piecewise polynomial representation of the actual curved surface geometry.

This capability requires the mesh to contain sidesets. Any surfaces that are not contained within
a sideset will be ignored by the code.

In order to activate MBG, the user must create an additional text input file with the .yaml
extension. An example would be:

globalAngleCriterion: 135 # degrees = 180 - 45
surface_sets:
- set_1: [surface_1]
- set_2: [surface_2,surface_3,surface_4]

QA:
activate: yes
file: qa
num_divisions: 2

The first line indicates a feature angle used to detect sharp edges. This helps to avoid generating a
smooth geometry where a sharp edge exists. The default value is 135 degrees - a value of 180 will
result in all surface edges included, a value of 0 will result in no surface edges included.

The second part defines grouping of sidesets into surface sets. This enables curvature of edges
(boundaries of sidesets) to be detected properly when sidesets have nonempty intersection. Finally,
there are opportunities to visualize the edges detected by the algorithm using the QA section. This
produces an ExodusII output file that can be inspected to see if the edge seams are correct.

For an example, we apply the MBG approach to uniform refinement of the example in the
previous two sections. The identified mesh-based geometry of this example is shown in Figure 3.6
where the original geometry was meshed coarsely with 9974 linear tet elements. An example
command line execution is illustrated below using four processors. The first step produces a new
mesh which contains additional parts and fields to store both the geometry representation as well
as the association with sidesets.

launch -n 4 mesh_adapt --respect_spacing=0 \
--refine=DEFAULT --input_mesh=speaker.g \
--output_mesh=speaker.withgeom.g --number_refines=0 \
--fit_3d_file=speaker.yaml \
--ioss_read_options="auto-decomp:yes"

22

Figure 3.6: Example of UMR with geometry from mesh-based geometry: base mesh on left with
sidesets highlighted and identified edge seams on right.

launch -n 4 mesh_adapt --respect_spacing=0 \
--refine=DEFAULT --input_mesh=speaker.g \
--output_mesh=speaker_R1.g --number_refines=1 \
--input_geometry=speaker.withgeom.g --smooth_geometry=0 \
--ioss_read_options="auto-decomp:yes"

The input .yaml file is referenced using the --fit_3d_file= option and the MBG ExodusII file
is referenced using --input_geometry= option. Please note that the input mesh is the same for
both commands.

For a second level of refinement, the output refined mesh can be re-used as the input mesh as
follows:

launch -n 4 mesh_adapt --respect_spacing=0 \
--refine=DEFAULT --input_mesh=speaker_R1.g \
--output_mesh=speaker_R2.g --number_refines=1 \
--input_geometry=speaker.withgeom.g --smooth_geometry=0

In Figure 3.7 we plot two levels of uniformly refined meshes using mesh-based geometry where
it is clear that the geometry of the refined mesh conforms better to the true geometry than the
faceted geometry of the coarse mesh. Finally in Figure 3.8 we plot some areas on the second refined
mesh where no sidesets were present, in order to indicate that no refinement to any geometry was
applied there.

23

Figure 3.7: Example of UMR with geometry from mesh-based geometry: two levels of uniformly
refined meshes.

Figure 3.8: Example of UMR with geometry from mesh-based geometry: regions where no
sidesets were present.

24

3.5 Example of refinement to CAD with smoothing

We conclude this chapter with a demonstration of geometry combined with smoothing. Below
we are refining a half torus that has been meshed very coarsely. The CAD geometry is available
which enables the new nodes to lie on the correct geometry. However, with smoothing we can
move both the new nodes and the original nodes to improve the mesh quality.

mesh_adapt --refine=DEFAULT --respect_spacing=0 \
--input_mesh=parallel_refine.in.e --output_mesh=out.e \
--number_refines=1 --input_geometry=parallel_refine.3dm \
--smooth_geometry=1 --smooth_surfaces=1

In Figure 3.9 we present three refined meshes based on no geometry, geometry and geometry
with smoothing. The worst quality element without smoothing (and with geometry) had a value of
0.399 for scaled Jacobian. After smoothing this improved to 0.444.

Figure 3.9: Example of UMR with CAD geometry and smoothing. Left mesh is refined without
geometry or smoothing. Middle mesh is refined with geometry but no smoothing. Right mesh uses
both geometry and smoothing.

25

This page intentionally left blank.

Chapter 4

Offline Adaptive Mesh Refinement

4.1 Overview of offline adaptive refinement

Percept provides a local adaptive mesh refinement interface that enables adapted meshes to
be generated for analysis codes. We refer to this capability as "offline" adaptivity since the mesh
adaptation process occurs outside the analysis code execution. This enables workflows where the
analyst can run analysis, then adapt the mesh, followed by another analysis run (also referred to as
"run-adapt-run").

The offline adaptivity workflow requires more interaction between the meshing and the analysis
than is common for analysis using a single mesh. For example, suppose the analysis uses a base
mesh called "mesh.g"; we will need some notation to refer to the subsequent adapted meshes. We
assume that the mesh file name has a base name (here it would be "mesh") and a file extension
(here it would be "g") which are connected with a dot "." character.

In offline adaptivity the base name of the mesh is required to end in zero. The adapted meshes
generated will then end in increasing integers beginning with one. This is similar to the case
with uniform refinement, where we need to number the meshes to reflect their position in the
mesh refinement hierarchy. For example, we might have a sequence of meshes called "mesh0.g",
"mesh1.g", etc. where increasing index in the base name means finer meshes.

The reason for this requirement is that Percept generates an additional family of meshes to
contain the entire mesh hierarchy of elements from the base mesh to the finest refinement level
(called “full mesh” here). These meshes contain the string "_ft" in the name to distinguish them
from the meshes containing only the active elements (called “analysis mesh” here). Table 4.1
illustrates the naming conventions for an initial base mesh called “mesh0.g”:

The adaptive mesh refinement is based on an input Exodus mesh database that must contain an

refine level analysis mesh full mesh
0 mesh0.g N/A
1 mesh1.g mesh1_ft.g
2 mesh2.g mesh2_ft.g

Table 4.1: Example of mesh naming conventions for offline adaptivity for two levels of refinement.

27

element scalar field of error indicator values. This field can be computed by an analysis code using
an application-specific algorithm to estimate local discretization error. Alternatively, another anal-
ysis code such as Encore can be used to compute the error indicator using only the solution fields
output from the analysis code, using for example a gradient or stress patch recovery algorithm.

Elements are marked for refinement/unrefinement based on the error indicator field using sepa-
rate refinement/unrefinement treshold values. This works as long as the user can provide appropri-
ate threshold values. An alternative approach that we suggest, is using a parameter on the growth
of the number of elements to let Percept determine the refinement threshold automatically. For
example, if the user set the growth parameter to be 1.2, then the refinement threshold would be
computed iteratively to result in a new mesh with approximately 1.2 times the original number
of elements or a 20 percent increase. Marking can also be limited to within a geometry region.
Currently Percept supports rectangular boxes, cylinders, and spheres as the geometric regions.

In order to use offline adaptivity, we suggest using an additional input file (typically called
“adapt.yaml”). An example file is shown below

error_indicator_field: error_indicator
marker:
refine_fraction: 0.0
unrefine_fraction: 0.0
type: fraction

max_number_elements_fraction: 1.5
max_refinement_level: 5
do_rebalance: yes

The first line provides the name of the element error indicator field. The next section specifies
options associated with the marking of the elements. The refine fraction is a number θr between
zero and one that determines the refinement threshold to be (1− θr) times the max value of the
error indicator field. Similarly, the unrefine fraction is a number θu between zero and one that
determines the unrefinement threshold to be θu times the max value of the error indicator field.

In this example, the refine/unrefine fractions are both set to zero. This results in an unrefine
threshold of zero and a refine threshold equal to the max value of the error indicator. When the er-
ror indicator field is nonzero (typical case), this prevents any elements to be marked for refinement
or unrefinement. The next option in the example (max_number_elements_fraction) is a target mul-
tiplier insures that some elements are actually marked for refinement. This is done by iteratively
adjusting θr until the estimated number of total new elements will hit the target multiplier times
the number of original elements.

The maximum amount of refinements that can occur for an element in the original mesh is
specified using the max_refinement_level parameter. The do_rebalance parameter is very impor-
tant for insuring good parallel performance on the resulting adaptive meshes. When specified, this
option enables re-partitioning of the mesh based on the new adapted mesh.

In order to limit the adaptivity to a geometric region, the bounding_region option must be

28

Option Default Value
error_indicator_field error_indicator

marker: refine_fraction 0.2
marker: unrefine_fraction 0.1

marker: type fraction
max_number_elements_fraction 1.0

max_refinement_level 3
do_rebalance no

max_marker_iterations 100

Table 4.2: Default values for offline adaptivity.

present. Examples are shown below (only one can be used during an adaptive refinement step):

bounding_region:
type: sphere
radius: 0.5
center: [1.0,0.5,0.0]

bounding_region:
type: cylinder
radius: 0.75
start: [1.0,0.0,1.5]
end: [2.0,0.0,1.5]

bounding_region:
type: box
start: [0.0,0.0,0.0]
end: [1.0,0.5,0.75]

4.2 Example: offline adapt for an unstructured triangle mesh

In this example we demonstrate offline adaptive refinement for a simple two-dimensional
unstructured triangle mesh. The coarse mesh contains 14 elements and covers the domain
[0,2]× [0,1]. The error indicator for each element is interpolated to the centroid using the an-
alytic function e(x,y) ≡ exp(y−x2/4−x/2)2

. This function acts as a surrogate for an analysis code
producing an error indicator for a steady state calculation.

The contents of the adapt.yaml file are shown below. Here we will run with two processors and
enable rebalance. At each adaptive step we expect to get roughly twice the number of elements in
the new mesh.

error_indicator_field: error_indicator
marker:

29

refine_fraction: 0.0
unrefine_fraction: 0.0
type: fraction

max_number_elements_fraction: 2.0
max_refinement_level: 5
do_rebalance: yes

Sample screen output from the refinement of mesh2 into mesh3 is shown below using the run
command

launch -n 2 mesh_adapt adapt mesh3.e out3.e

Here the number of elements increased from 112 to 208 or about a 1.86 multiplier. The rebalance
did not improve the imbalance on this mesh which was about 43%. The table called “Marker binary
search convergence history” displays the progress to determine the refinement threshold needed to
achieve the target max_number_elements_fraction parameter.

PerceptMesh:: opening mesh3_ft.e
PerceptMesh:: opening out3.e
Error indicator read from file.
Refinement initialized.
Marker binary search convergence history:

iter current error min error
-1 0 0
0 0.5 0.5
1 0.75 0.75
2 0.875 0.75
3 0.8125 0.75
4 0.78125 0.78125
5 0.796875 0.78125
6 0.7890625 0.7890625
7 0.79296875 0.7890625

Marking complete. Beginning refinement.
Refinement complete.
Refined mesh has 126 nodes and 287 elements.
Refinement complete.
imbalance before= 1.43269 imbalance after= 1.43269

Saving mesh mesh4_ft.e ... done
Saving mesh mesh4.e ... done
Timings: max wall clock time = 0.297303 (sec)
Timings: max cpu clock time = 0.151977 (sec)
Timings: sum cpu clock time = 0.298955 (sec)

30

In Figure 4.1 we provide some plots of the adapted meshes. Figure 4.1(a) shows the distri-
bution of the error indicator using the final adapted mesh. In Figure 4.1(b) we plot the processor
decomposition on the final mesh, which has shifted to include more of the refined elements on proc
1 with most of the coarser elements on proc 0. The overall load imbalance on this mesh is only
about 10%. Figure 4.1(c) illustrates the local refinement level, which indicates how many times an

(a) error indicator on mesh4 (b) processor decomposition on mesh4

(c) refinement level on mesh3 (d) transition elements on mesh2

Figure 4.1: Example of offline adaptivity on a simple triangular mesh.

element has been refined from the original mesh. Here we are looking at the third refinement, so
this value can be zero to three.

Finally in Figure 4.1(d) we highlight the transition elements, which are elements that do not
refine using the standard pattern for triangles, which splits them into four child triangles. The
triangles in red were all split into two by splitting only a single edge of the parent element.

31

This page intentionally left blank.

Chapter 5

Mesh Transfer Tool

Percept mesh transfer capabilities are provided through the mesh_transfer application code.
Support is provided for transfer between two meshes, referred to as the source and destination
meshes. Both meshes can have the same spatial dimension (2D or 3D), or the source mesh can
be 2D axisymmetric with a 3D destination mesh. In the latter case, support for components of
axisymmetric vector fields is provided.

To see all the options possible just run

mesh_transfer --help

The following sections describe the various options. Each option requires an equals (=) sign fol-
lowed by the argument.

5.1 Source file (Required)

The --src-file option specifies the ExodusII file that contains the fields to be transferred.
This file is assumed to be already decomposed when running in parallel.

5.2 Destination mesh (Required)

The destination mesh used in the transfer is specified with --dst-mesh option. This ExodusII
file is assumed to be already decomposed when running in parallel.

5.3 Target file (Required)

The new ExodusII file containing the results of the transfer is specified with the --target
option. When run in parallel, this mesh will be written in decomposed form, with no concatenation
into a single file.

33

5.4 Source field

The source field is specified using the --src-field option. Currently only one field can be
transferred at a time. These can be scalar or vector fields.

5.5 Source vectors for 2D axisymmetric to 3D transfers

In the 2D axisymmetric to 3D case, the source field can be a component of a vector field. We
assume that the y-axis in the source mesh is the same as the z-axis in the destination mesh, and that
the x-axis is the same in both.

The normal component (out of plane) scalar is specified using the --src-rznvec option. This
field is transformed to a new vector field according to

u =−α sin(θ), v = α cos(θ), w = 0

where α is the value of the scalar field and θ is the angular location source/destination mesh.

The two in-plane components are specified as a vector using the --src-rzpvec option, and is
transformed according to

u = β1 cos(θ), v = β1 sin(θ), w = β2

where the components of the source vector are β1,β2.

5.6 Destination entity

By default, the entity type of the destination field is chosen to match the type of the source field
(node or element). But the user can specify this type using the --dst-entity option and it can be
different from the source field.

5.7 Destination name

By default, the name of the destination field is chosen to match the name of the source field.
But the user can also specify this name using the --dst-name option.

34

5.8 Rotations and translations

The target file can be rotated and translated after the transfer occurs. This can be helpful if the
target result is needed in a different position or orientation than the source model. The options for
rotation angles are --xrot, --yrot, and --zrot; the translation components are specified using
--xtrans, --ytrans, and --ztrans.

5.9 Repeated transfers and existing fields

The code is written to support repeated transfers. If the destination field already exists on the
destination mesh, the transferred field values are summed in to the existing values and written to
the target file. Values of all other fields in the destination mesh are preserved in the target file.

5.10 Example of mesh transfer usage

We present a small example that includes all of the above options. Here we have a 2D source
mesh containing a scalar field “jetheta” and a 2D vector field “je”. These are components of a
3D axisymmetric vector field which we will call “jn”. There is also an element scalar field called
“scalar”.

The vector field is assembled using two repeated calls to mesh_transfer. The first call will
transfer the in-plane axisymmetric vector field “je” to a new 3D vector field called “jn” on an
intermediate results mesh called out1.exo. We next transfer a scalar field called “scalar” using
a second transfer call to a second intermediate file called out2.exo, preserving the intermediate
values of the field “jn”.

Finally, the third call will transfer the scalar field “jetheta” as the out-of-plane component of
an axisymmetric vector field to a final target mesh called out.exo. Because the destination mesh is
the second intermediate mesh (out2.exo), the new transferred values of “jn” will be added in with
the original values from the first transfer and the values of the field “scalar”. Options are added to
the final transfer to apply a rotation and translation of the final target result.

mpirun -n 8 mesh_transfer \
--src-file=q4_2d.e \
--dst-mesh=h8_3d.g \
--src-rzpvec=je \
--dst-entity=node \
--dst-name=jn \
--target=out1.exo

35

mpirun -n 8 mesh_transfer \
--src-file=q4_2d.e \
--dst-mesh=out1.exo \
--src-field=scalar \
--dst-entity=node \
--dst-name=scalar \
--target=out2.exo

mpirun -n 8 mesh_transfer \
--src-file=q4_2d.e \
--dst-mesh=out2.exo \
--src-rznvec=jetheta \
--dst-entity=node \
--dst-name=jn \
--target=out.exo \
--xrot=30 --zrot=45 \
--xtrans=-1 --ytrans=-2 --ztrans=4

Sample screen output from the first transfer:

PerceptMesh:: opening q4_2d.e
PerceptMesh:: opening h8_3d.g
MeshTransfer: initializing transfer
MeshTransfer: performing transfer at time = 1
MeshTransfer: performing transfer at time = 2
MeshTransfer: performing transfer at time = 3
...
MeshTransfer: performing transfer at time = 8

36

Figure 5.1: Example of mesh transfer at final time step: (left) cutaway of second intermediate mesh
“out2.exo” and (right) cutaway of final target mesh “out.exo” shown along with “out2.exo” result.

37

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

38

v1.40

39

40

	Introduction
	Basic Uniform Mesh Refinement
	Refine option
	Input mesh (Required)
	Output mesh (Required)
	Number of refines
	Ioss read options
	Ioss write options
	Respect spacing
	Pre-check memory usage
	Specify blocks to refine
	Use transition elements
	Smooth mesh after refinement
	Handling of blocks, nodesets and sidesets
	Element enrichment
	Example: basic UMR usage
	Example: block UMR usage

	Uniform Mesh Refinement with Geometry
	[New in 4.44] Refine to CAD Geometry
	[Deprecated] Refine to CAD: openNURBS
	[Deprecated] Generating openNURBS Geometry Files
	Refine to Mesh-Based Geometry
	Example of refinement to CAD with smoothing

	Offline Adaptive Mesh Refinement
	Overview of offline adaptive refinement
	Example: offline adapt for an unstructured triangle mesh

	Mesh Transfer Tool
	Source file (Required)
	Destination mesh (Required)
	Target file (Required)
	Source field
	Source vectors for 2D axisymmetric to 3D transfers
	Destination entity
	Destination name
	Rotations and translations
	Repeated transfers and existing fields
	Example of mesh transfer usage

